Pacific Northwest Native Plant Profile: Cascara (Rhamnus purshiana)

Rhamnus purshiana drupe
Of the 100+ Rhamnus species worldwide,
the Northwest’s representative is a lovely small tree or tall shrub. The first thing you may notice about Cascara (Rhamnus purshiana, syn. Frangula purshiana) is its texture: silvery gray bark that’s nearly smooth, and oval, glossy green leaves with veins so prominent that they make the surface wavy and crinkled-looking. Leaves turn yellow to orange in autumn and may hang on in areas with mild winters. But Cascara’s charm doesn’t stop there. Springtime brings loose clusters of small, pale greenish-yellow flowers that later become small red fruit (a drupe) that ripen to the deepest purplish-blue possible. Each fruit contains 2 or 3 seeds.
Rhamnus purshiana

How it grows
Cascara naturally occurs along the Pacific coast from British Columbia south into northern California, as well as parts of Idaho and Montana. It’s found in moist to dry shaded forests and mixed woodlands, often along streams and in moist ravines, at low to middle elevations, as well as floodplains. It grows up to 30 feet tall and half as wide.

The dried bark of Cascara has been used for hundreds of years as a laxative—first by indigenous peoples and then commercially (sold as Cascara sagrada)—and the high demand for it has led to unethical harvesting from wild trees, which deprive the plants of their protective and essential bark. It is probable that this practice has heavily reduced cascara populations.

Wildlife value
Pollinators—such as hummingbirds and native bees—come to Cascara’s late spring flowers. Birds, including band-tailed pigeons, are attracted to the pea-sized fruit. Mule deer and other mammals may use it as browse.

 

Try it at home
Cascara is a great choice for small yards or where large trees wouldn’t thrive, and I don’t know why it’s not planted more. Besides it’s beauty and wildlife appeal, it’s a fast grower that can take full sun to full shade, but does best in partial shade. Though it is drought tolerant when established (especially in shade), it will look and do its best with somewhat moist, well-drained soil that’s rich in organic matter (add compost!). In general, trees planted in hot, sunny areas will need more water. Like us, Cascara shows sensitivity to toxic gases and tiny sooty particles that are belched out by fossil fuel powered vehicles, so keep it away from busy streets and highways.

If planting multiple trees, place them 10 to 15 feet apart (about 10 feet apart for shrubs used as a hedgerow). Cascara shrubs are a good substitute for invasive English laurel or Portugal laurel shrubs where they can be left unpruned.

Grab a partner
Cascara may grow in the understory of trees such as big leaf maple, Douglas-fir, and western hemlock, where it might live alongside vine maple, red alder, and red-twig dogwood.

It’s worth noting that some species of buckthorn, such as Rhamnus cathartica (“common buckthorn,” native to parts of Europe, northwestern Africa and western Asia), are invasive outside their natural range. R. cathartica was introduced as a garden plant and is now naturalized in parts of North America, probably because it leafs out earlier than native species, often contributing to their downfall.

 

© 2017 Eileen M. Stark

To leave a comment, click on post’s title

How to Support Pollinators in All Their Life Stages

Many pollinators are in steep decline and in dire need of protection. A black-tailed bumble bee (Bombus melanopygus) feasts on hairy honeysuckle blossom (Lonicera hispidula).

Many pollinators are in steep decline and in dire need of protection. Here, a black-tailed bumble bee (Bombus melanopygus) feasts on hairy honeysuckle blossom (Lonicera hispidula).

 

It’s that time again—National Pollinator Week—when we pay a little more attention to the hard-working animals who give so much. They help pollinate about 75% of flowering plants and nearly the same amount of our food crops. Without them, life would be very different. So let’s honor these fascinating creatures who face seemingly insurmountable threats, including habitat loss, climate change, and pesticide use. It’s tragic and overwhelming, but there is much that each of us can do as individuals, and together we can have a tremendous influence over potential habitat in everything from tiny urban lots to community gardens to large rural expanses.

Even a small garden can make a difference. For example, in my yard I offer a variety of native flowering trees, shrubs and perennials throughout, as well as a mini-meadow where locally native perennials—such as columbine, fleabane, checker mallow, blue-eyed grass and iris—grow and buzz with life. Equally important is leaving leaf litter and dead wood around, and not doing any “clean up” until well into spring, so as to not disturb overwintering adults, eggs, larvae, or pupa, camouflaged so well. For example, the strikingly beautiful western tiger swallowtail butterfly may overwinter as chrysalis (pupa), which looks like a little piece of wood during that time. Other things we can do for pollinators include participating in “citizen science” projects that seek input from gardeners, and advocating for an end to pesticide use in our parks and communities.

At home, here are ten things we can do to attract and support a variety of them, from bees and butterflies to beetles and flies

Syrphid fly (Scavea pyrastri) on western bleeding heart (Dicentra formosa).

A syrphid fly (Scavea pyrastri) on western bleeding heart (Dicentra formosa).

Grow a variety of plants that are native to your area, and you won’t need to think too much about whether you will provide food for pollinators. Research suggests that native plants are four times more alluring to native bees, for example, than exotic flowers.

Got lawn? Whether you have a large or small lot, consider replacing—or at least minimizing—turf with native grasses and wildflowers, or perennials and mosses in shady areas. Add shrubs and trees to provide cover and protection, especially for bees who create nests in the ground.

Leave parts of your garden a little “wild.” Undisturbed nesting locations are absolutely essential, and gardens that aren’t too neat and provide log piles, mounds of rounded stones, exfoliating tree bark, and patches of bare, well-drained, undisturbed soil will help. From fall till spring, allow leaves to remain undisturbed on the ground so that overwintering butterfly and moth eggs/caterpillars and bees can slumber peacefully under a leafy ceiling. For the numerous species of ground-nesting bees (70% of bees nest in the ground, like ants do), avoid extensive tilling or anything that prevents access to soil, like plastic mulch or thick layers of organic mulch. Nest sites for bees that nest aboveground can be supplemented by horizontally placing hollow or pithy stems, or blocks of wood or downed wood with dead-ended, narrow holes drilled into them. Some species also utilize the vegetative parts of plants for food as well as cover or resources for nesting.

Steer clear of pesticides. Even those approved for organic gardening, such as rotenone, are harmful. Systemic insecticides like neonicotinoids (a class of insecticides such as imidacloprid, acetamiprid, clothianidin, dinotefuran, nithiazine, thiacloprid and thiamethoxam that affect insects’ central nervous systems), are absorbed by plants and produce toxic nectar and pollen. Studies show that residues may persist in woody plants for up to six years following application and may persist in soil for several years. Herbicides and fungicides can also be harmful. In a healthy, balanced system there should be no need to resort to poisons.

Turn roadsides native. Studies show that native pollinators are much more prevalent in native stretches of roadside habitat—often the only connection between patches of remnant habitat—than weedy, nonnative stretches. If you own rural land, plant natives near your roadside and mow it infrequently to prolong bloom and prevent harm to creatures who may be taking cover within it.

Small female mining bee (Andrea sp.) gathers pollen for her young on showy fleabane (Erigeron specious).

Small female mining bee (Andrena sp.) gathers pollen for her young on showy fleabane (Erigeron speciosus).

Provide nectar and pollen in variety of flower color, shape, and size for pollinators with different needs. Flower nectar, produced in glandular organs called nectaries, is high in carbs and serves to attract pollinators to distribute plants’ pollen (and in some cases, attracts protectors like parasitoids and ants—which also pollinate to a small extent—against herbivores that may be problematic). Pollen is a highly nutritious blend of proteins, lipids and carbohydrates. We’ve been taught that bees tend to prefer yellow, purple, and blue flowers—anything but red, which they can’t see—while hummingbirds can see and do use reds (although one study suggests that their preference may not be innate, but rather they choose them since bees don’t). While this is true, a 2016 research study shows that bumblebees (and probably other pollinators) choose a plant for the nutritional quality of its pollen, not only its color; they were found to need pollen with a high protein to lipid ratio (which makes sense, since the pollen is mainly used to feed their growing larvae). But flower shape and size also matter: butterflies need clusters of short, tubular flowers with a wide landing pad, such as yarrow (Achellia millefolium occidentalis), various native bees need different types of flowers (generally shallow), while hummingbirds like relatively large, tubular, or urn-shaped flowers.

Anna’s hummingbirds pollinate while they forage for nectar.

Keep it blooming. From spring through fall, something should always be in bloom, preferably several species at a time. In the Pacific Northwest, early spring flowers, like those of Indian plum (Oemleria cerasiformis), willows (Salix), and red-flowering currant (Ribes sanguineum), are particularly important to bees emerging from hibernation, while late-season nectar sources such as asters (Symphyotrichum spp. or Aster spp.) help bees that overwinter as adults get through the winter. Both early and late forage may aid in bees’ reproduction. Of course, mid-summer flowers are important, too! Many native species bloom for extended periods, such as charming foamflower (Tiarella trifoliata), which produces flowers from spring to late summer. Learn when plants bloom to be sure you’ve got it covered, and aim for some overlap in bloom times. Remember that trees and shrubs, as well as perennials and annuals, can provide nectar and pollen. Arrange plants in clusters or drifts or swaths of at least three different plant species so that each plant is next to or within a few feet of another of its kind, to supply enough forage and to make them easy for pollinators to find.

Moisten sand or loose soil to help adult butterflies. Butterflies and moths ingest liquids like flower nectar from which they obtain sugars, minerals, and other nutrients. But they also need to “sip” from muddy or sandy puddles, sap, decaying fruit, sweaty humans, even manure piles to hydrate themselves and obtain dissolved minerals, including salt. Such minerals are vital for many physiological functions, including reproduction: Males often transfer “nuptial gifts” of sodium and amino acids to the female during mating (along with other donations). Before you say, “He shouldn’t have,” consider how evolution toward generosity might generate rewards: more gifts mean more nutrition and better egg survival. To assist, add a dash of salt to containers of moist sand or soil, to be sure they get what they need.

Butterflies and moths often obtain nutrients and moisture in mud puddles, but they’re also attracted to perspiration on skin, like this green comma butterfly.

Butterflies and moths often obtain nutrients and moisture in mud puddles, but they’re also attracted to perspiration on skin, like this green comma butterfly.

Grow butterfly host plants. To become adults, butterflies in earlier life stages—egg, larva, chrysalis—require host plants that provide habitat and food. Find out which butterflies frequent your area, and grow the plants that provide for all their stages. In the Northwest check out these handy guides: Create a Butterfly Garden (OSU) and Butterflies and How to Attract Them (WDFW).

Forgo hybridized and “double” flowers. When choosing nonnative plants, keep in mind that hybridized varieties may lack sufficient pollen nutrition—pollens vary in protein content, and bees and other pollen consuming insects need a wide variety to fulfill their protein requirement. Research also suggests that some commonly used garden plants, especially those hybridized for features valued by gardeners, like disease-resistance or flower size or color, may not provide sufficient or appropriate nutrients in nectar, needed for carbohydrates. Frilly double-flowered varieties (those with extra petals that make a flower look inflated and flouncy) are usually inaccessible to pollinators simply because they can’t get through the mass of petals to the nectaries. It’s a bit sad to watch a bumblebee, trying but unable to get inside an overly dressed flower, fly away without food.

Trichodes ornatus

This beetle (Trichomes ornatus), on wild buckwheat (Eriogonum sp.), is a member of a very diverse group of pollinators that are especially important in areas where bees aren’t common.

 

© 2017 Eileen M. Stark

Adapted from content originally published in my book, Real Gardens Grow Natives: Design, Plant, & Enjoy a Healthy Northwest Garden.

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Broad-leaved penstemon (Penstemon ovatus )

Anna on Penstemon ovatus
Growing penstemons usually requires a valiant effort to mimic wild conditions
by creating rock gardens complete with crevices that these beautiful plants’ roots can inch their way into. Most species will suffer without well-aerated, quick draining soil, and can’t live with frequent summer irrigation. Unless you reside where the soil is naturally rocky or gravelly, providing fast drainage in the Pacific Northwest can be a bit challenging. But Penstemon ovatus likes moisture and will usually let you manage with whatever soil you have, providing it drains well and contains a fair amount of organic matter.

Nicknamed broad-leaved or egg-leaf penstemon, it’s a great asset to the garden. Long-lived and upright, it grows from a woody base with glossy, deep green, spade-shaped leaves. When in flower—typically May and June—the plants rise up to two or three feet above ground. Speaking of flowers, they are gorgeous: small (15-20 mm) but many, and arranged in whorls on fairly tall inflorescences, they are a brilliant blue that melds into violet.

How it grows
Hardy to Zone 4, this perennial is native to parts of the PNW west of the Cascade Mountains, at low to middle elevations in damp, partly sunny to mostly shady places near forest edges, often in riparian areas. It’s range is somewhat scattered and includes the western Columbia Gorge and parts of the Willamette Valley, as well as northern areas of the Olympic peninsula and southern British Columbia. Natural distribution to county level can be found here.

Wildlife value
Penstemons, in general, are fantastic pollinator plants that are irresistible to hummingbirds, native bees, syrphid flies, beetles, ants, moths, and others, depending on the species. I’ve seen P. ovatus attracting syrphid flies, P. ovatus + tiny native beeants, bumble bees, and impossibly small native sweat bees, many of which nest in the ground (so take care when applying mulch or digging in soil to avoid harming them). Small songbirds may eat the seeds that mature in summer, and foliage creates cover for tiny creatures.

Try it at home
Broad-leaved penstemon likes rich soil, regular (but not constant) watering, and virtually any light situation except deep shade or excessive sun, although more sun tends to make the plants more floriferous. Since it is a fairly robust and versatile plant, placement shouldn’t be too difficult: In my Portland yard I find it does best in part sun, and looks great a foot or two in from a pathway due to its height while in bloom. Placing multiple plants in swaths, with each plant around 18 inches apart will make it easy for pollinators to find them and minimize the amount of bare soil that sprouts weedy plants.P.ovatus

As mentioned earlier, unless your soil is already high in organic matter and drains well, add some low-nitrogen compost before planting (leaf compost is good). I like to get plants in the ground in mid to late fall when forthcoming winter rains will help get their roots established before the demands of spring; if you plant in springtime be sure to keep them adequately hydrated during the first few summers. After plants are established (usually a couple of years), they should do fine with just occasional—but deep—watering. If you happen to plant them close to other plants that like frequent irrigation they will likely do fine, but don’t keep them consistently saturated. Siting them at the edges of rain gardens should work, but not in the low, very wet parts.

Another Northwest penstemon for moist conditions is P. serrulatus.


© 2017 Eileen M. Stark

To leave a comment, click on post’s title

 

Pacific Northwest Native Plant Profile: Western bleeding heart (Dicentra formosa)

D. formosa
We love Western (or Pacific) bleeding heart
because it’s so beautiful and delicate, especially this time of year when the leaves are fresh and flowers are bountiful. Whoever named it felt the same way, because botanically speaking it’s known as Dicentra formosa, with the genus Dicentra referring to the two nectar-bearing spurs characteristic of the flowers of this genus, and the epithet formosa meaning beautiful.

How it grows
With deciduous, finely divided, bluish-green leaves and enchanting little puffy pink flowers, it blooms from early spring into summer. In warm areas with no summer irrigation it tends to disappear after its leaves die back, but fleshy roots keep the plant alive until the following spring. Should moisture reach it during the summer months, it could very well forget about dormancy and even produce more flowers in the fall. It prefers cool weather to hot, and can withstand cold winters.

Western bleeding heart occurs from low to middle elevations in British Columbia, south into Washington and Oregon (west of Cascades), and California. It thrives in part to full shade in moist forests and woodlands, in ravines, and near streams.

Wildlife valueD. formosa + Bombus vosnesenkii
Wildlife seems to adore this plant as much as we do, due to a variety of attractants. The nectar-rich flowers attract hummingbirds, bumble bees, and syrphid flies, while the foliage may be consumed by the larvae of clodius parnassian butterflies in parts of its range. Aphids like it too, but don’t worry, because the birds who like to eat them should keep them in check: In late April, a small flock of yellow warblers–fresh from an arduous migration from central America–stopped in my yard to feed quite voraciously on them for nearly a week; a couple of the warblers have stayed around and may be nesting nearby. And other unnoticeable predators, like the developing larvae of some species of syrphid flies, can eat as many as 500 aphids (each!). In landscapes where predators and prey are allowed to exist a naturalistic balance soon results.Yellow warbler + Dicentra formosa

Western bleeding heart mainly spreads by underground rhizomes, but it’s also figured out a way to get more mileage. The little black seeds of this plant evolved an oil-rich appendage (called an elaiosome) which ants like to feed to their young. When the ants toss the unused part of the seed that’s still viable, they assist in dispersal.

The plant’s leafiness provides cover for small creatures like amphibians and various arthropods, and protects the soil as well.

Try it at home
This plant looks wonderful in woodland gardens growing beneath native conifers or other trees, in the company of ferns like deer fern (Blechnum spicant) or western sword fern (Polystichum munitum). It does best with light, moist soil that’s rich in organic matter. Adding a top layer of leaf compost or other organic matter (such as fallen leaves that break down by fungus and microscopic creatures) will help maintain moisture around its roots, improve soil structure, and add some nutrients to the soil.

Keep in mind, though, that this is not a shy plant. It likes to prance around the yard, so may not be best for very small sites, especially if there are delicate perennials that awaken late and could be shaded out by the early arriving bleeding heart. That said, it’s not terribly difficult to remove should you decide you’ve lost affection for it later on (but don’t put it in your home compost bin or it will spread everywhere!).

Grab a partner
Western bleeding heart thrives with native conifers, and in the Pacific Northwest they might be western red cedar (Thuja plicata), western hemlock (Tsuga heterophylla), Douglas-fir (Pseudotsuga menziesii), grand fir (Abies grandis), noble fir (Abies procera), Sitka spruce (Picea sitchensis), and coastal redwood (Sequoia sempervirens). Deciduous trees like red alder (Alnus rubra) and vine maple (Acer circinatum) also like to have it around. Understory species often found growing with it include red huckleberry (Vaccinum parviflorum), evergreen huckleberry (V. ovatum), red twig dogwood (Cornus sericea), salal (Gaultheria shallon), Indian plum (Oemleria cerasiformis), false Solomon’s seal (Smilacina racemosa), Hooker’s fairy bells (Disporum hookeri), western meadow rue (Thalictrum occidentale), Scouler’s corydalis (Corydalis scouleri), stream violet (Viola glabella), ferns—such as western sword fern (Polystichum munitum), ladyfern (Athyrium filix-femina)—and mosses.

Other Dicentra in the Northwest
The uncommon Dicentra cucullaria (Dutchman’s breeches) has white to pale pink flowers with yellow tips and occurs parts of Oregon and southern Washington, mainly near the Columbia River. D. pauciflora, (shorthorn steer’s head or few-flowered bleeding-heart), is native to Josephine County, Oregon and small parts of California, only at high elevations in gravelly soils. D. uniflora (steer’s head), is a rare relation that also grows in gravelly (sometimes serpentine) soils at low to high elevations in parts of the Northwest.

© 2017 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Henderson’s shooting star (Dodecatheon hendersonii)

 

Dodecatheon hendersonii
Nicknamed shooting starDodecatheon species are delicate spring bloomers
that could find a home in nearly every garden. If yours lacks this sweet little perennial wildflower that’s a member of the Primrose family (Primulaceae), by all means get outside now to witness its unusual blossoms, because the plant goes dormant fairly quickly after flowering. And then add it to your shopping list.

But let’s back up a bit: In springtime, the plant emerges from dormancy as a modest little clump of soft green, oval or spoon-shaped leaves. A few weeks later, a slim, leafless flower stalk grows above the rosette of foliage, and, after what seems like a blink of an eye (especially with Dodecatheon hendersonii or Henderson’s shooting star, that blooms especially early), spectacular little downturned flowers emerge with pink to magenta to white petals swept backward, looking almost as though they’d been caught in a terrific windstorm. It’s their stamens, stigma and style that protrude forward, collectively like miniature, colorful darts. Following pollination, the flowers turn upwards toward the stars. The ovary essentially becomes a capsule where the seeds develop, and as they mature, any remaining anthers, stigma, and petals fall off. Seeds are dispersed by wind or creatures bumping into the dry scape.Dodecatheon hendersonii

Wildlife value
Flowers, of course, aren’t just for our eyes. Dodecatheon species evolved to attract certain bees such as native bumble bees (and some species of solitary bees) that have an ability to vibrate flowers using indirect flight muscles (aka “buzz pollination”). While they’re collecting pollen for their young (Dodecatheon species offer no nectar), the bees release pollen that’s securely attached to a flower’s anthers and transfer it to stamens with their legs and mandibles (they also do this for other flowers with tubular anthers, including tomato blossoms later in the year, so consider growing native pollinator plants to attract native bees to your veggie beds!).

Try it at home
Dodecatheon hendersonii
 grows west of the Cascades in Oregon, Washington, northern California, and southern Vancouver Island at low to mid-elevations within open woodlands, forest edges, and grasslands, typically in partial shade. While it can handle the wet soils of the Pacific Northwest’s winter and spring, it needs to dry out a bit during the summer and fall, so if you grow this species, don’t irrigate often. Since it will take many years to form a colony, space plants in natural-looking drifts, about 12 inches apart and where they won’t be shaded out by any overzealous spring ephemerals you may have, such as tulips (or even native plants such as western bleeding heart).

Depending on your location and your site’s conditions, you might find other Dodecatheon species to be a better fit. Of the nearly 20 species within the genus, the Pacific Northwest hosts several other species: Dodecatheon pulchellum looks similar to D. hendersonii but has longer leaves and naturally occurs in moist areas such as near streams, seeps, and in wet meadows at low to high elevations; D. dentatum subsp. dentatum (white shooting star) is also endemic to the PNW and the only species with consistently white petals; D. poeticum is found mostly in the arid Columbia Basin and eastern Columbia Gorge, where it prefers to grow in soil that is rich in organic matter and fine sand, as found in the Gorge; D. alpine grows only in moist meadows and near streams at high elevations. Less common is D. jeffreyi, which naturally occurs in British Columbia, Washington, Oregon, California, Idaho, and Montana; it is Critically Imperiled in Wyoming. And D. austrofrigidum can be found, sadly, only in small, scattered populations in Gray’s Harbor and Pacific counties of Washington, where it is listed as Critically Imperiled, and in Clatsop and Tillamook counties of Oregon, where it is listed as Imperiled: In lower elevation riparian sites, “threats [to populations] exist due to logging and grazing upstream, which contributes to flooding and erosion that negatively impacts populations.

To make more of these wonders, collect seed in summer and plant in fall or early spring, or very very carefully separate bulblets (that are attached to roots) just after flowering.

Grab a partner
Friends and associates of D. hendersonii include Oregon white oak (Quercus garryana), madrone (Arbutus menziesii), California hazelnut (Corylus cornuta var. californica), oceanspray (Holodiscus discolor), snowberry (Symphoricarpos albus), camas (Camassia quamash), white fawn lily (Erythronium oregonum), and many others.

Dodecatheon hendersonii

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Western trillium (Trillium ovatum)

Trillium ovatum

Although introductions are probably not necessary, this is Trillium ovatum, an unmistakable and endearing plant that softly lights up the vernal understory of moist coniferous and mixed forests from southern British Columbia, south to California, east to Idaho, Montana and small parts of Wyoming and Colorado, and north to southwestern Alberta. It’s part of a large genus, with about 50 other members that are native to temperate areas of North American and Asia.

T. ovatum’s common names are “western trillium” and “wake robin,” the latter due to its designation as unofficial (or maybe official!) harbinger of spring. Trillium comes from modern Latin, reportedly an alteration of the Swedish trilling, meaning “triplet,” which refers to its three leaves and three petals. Ovatum is derived from the Latin ovum meaning “egg-shaped,” which describes the leaf outline.

A perennial that grows from rhizomes, it technically produces no true leaves or stems above ground—the stems are considered an extension of the horizontal rhizome. The part of the plant that we notice most is an upright flowering scape (stalk), and the leaf-like structures are bracts, but most people call them leaves because they photosynthesize. The smaller leaf-like structures just under the flower are sepals. Probably more than you wanted to know! Trillium ovatum

Trillums are divided into two types: Pedicellate (those whose flowers have a short stalk called a peduncle) and sessile (those with flowers attached directly to the bracts). The flowers have six stamens and three stigmas. Trillium plants are very long lived and can take as long as 10 years to flower from seed. As the flowers age, after pollination, the white flowers change to pink or even burgundy. Trillium are “spring ephemerals” and as summer proceeds, dormancy begins and they mostly disappear from our view.

Wildlife value
Pollination happens thanks to bumblebees, moths, and beetles. The fruit is fleshy and berrylike; the seeds evolved to have fleshy elaiosomes, whose nutritious proteins and fats attract muscular ants who carry the seeds back home to feed their young. After the food is consumed, they then toss the still viable seed and, voila! Seed dispersal accomplished.

Try it at home
Although trilliums are quintessential forest denizens, they usually do well in shaded to partly shaded woodland gardens, or even just moist (but well drained) areas on the north or east side of houses, provided that the soil is rich in organic matter and slightly acidic (pH 5.0 to 6.5). Trilliums can withstand minor droughts, but occasional summer water will help keep them going until winter rains begin.

The plants you buy will likely be small, but in the right conditions and over many years they will slowly grow to a clump as wide as two feet. Grow them as nature would, in drifts with individual plants roughly a couple of feet apart. I’ve never grown them from seed, but according to what I’ve read, seed is collected when capsules begin to open in midsummer. Sow them twice as deep as the seed’s diameter (or slightly deeper) in deep containers with coarse growing medium. Leave them outdoors in a shaded spot to mimic natural conditions. More detailed info on propagation here.

Some associates to grow them with include Douglas-fir, western red cedar, western hemlock, Pacific rhododendron, vine maple, salal, sword fern, deer fern, vanilla leaf, oxalis, western wild ginger, and stream violet.

Other Pacific Northwest trillium
Trillium albidum occurs in most parts of western Oregon, as well as Thurston, Pierce and Lewis counties in Washington, and much of northern California. T. parviflorum grows naturally in southwestern Washington and northwestern T. kurabyashiiOregon. T. rivale occurs only in southwestern Oregon and the northernmost counties of California. T. kurabayashii (pictured, right) is naturally found only in Oregon’s Curry County, as well as Del Norte and Humboldt counties of California.

As always, only buy natives from reputable nurseries and never dig plants from the wild. And never pick them—doing so may eliminate the only chance the leaf-like bracts have for photosynthesis, and cause the plant to weaken or even die.

 

© 2017 Eileen M. Stark

To leave a comment, click on post’s title

Remove Invasive Plants: It’s Good for Wildlife and Gardens

English ivy (Hedera helix)

A little neglect goes a long way (English ivy takes over).


I’m embarrassed to admit
that when I first moved to the Pacific Northwest in 1990, before I knew much about regional native plants, I thought that foxgloves were native plants. Why? Because I encountered them in natural areas. Luckily I know much better now, and—with the exception of some infrequently traveled trails in remote corners of the world—I cannot remember a hike where I haven’t encountered invasive plants (and sometimes a terribly large number of them). Areas close to urban areas are hardest hit, but even ecosystems far from the madding crowd can suffer from their effects.Digitalis purpurea

Invasive plants are nonnatives that were—and continue to be—brought here either intentionally by the nursery trade (or agriculture), or accidentally (as packing material and such). Thousands of species have been brought to North America, and we’ve sent many of ours abroad. All this rearranging of the earth’s flora started innocently enough centuries ago, but experts fear that it’s reached a point where biological diversity is severely threatened  and essential interactions, like pollination, are damaged. Foxglove (Digitalis purpurea), as lovely as a biennial can be, may not be one of the worst offenders, but it doesn’t stay put with its billions of tiny seeds, and shows up in places it doesn’t belong, basically making life miserable for the plants that do. More problematic species often reproduce in several ways: For example, Himalayan blackberry and English ivy (shown above) and its cultivars, both spread via rooting stems and by fruits eaten and dispersed by wildlife. Both suppress and exclude native vegetation to form dense monocultures, entirely unsuitable as wildlife habitat. English ivy is capable of one other feat, if left alone: taking down entire trees.

Of course, not all nonnative plants pose horrendous problems, but those that do run amok do it because whatever checks—soils, predators, pathogens—kept them in balance in their native land are lacking here. Consequently, they do so well that they’re able to spread fairly easily from yards or agricultural areas into natural areas that support native species that can’t compete; the natives have no defense, become overwhelmed by the newcomers, and die out. This is particularly devastating for uncommon or endangered plants. In addition, the spread of invasives (plant, animals, and pathogens) has economic ramifications.

Deadly for wildlife
While habitat loss due to deforestation, urban sprawl, livestock grazing, and agriculture is the greatest threat to the variety of life on Earth, invasive plants contribute greatly to the tragic loss of biodiversity. Since native plants are essential for native fauna (especially specialist species that can only use a certain plant or plants), animals suffer from the demise of native plants that they may use for forage or other purposes. And some are actually poisonous. It’s not unusual for cedar waxwings to be poisoned by the fruit of heavenly bamboo (Nandina domestica). And this past winter, many wild elk and pronghorn died horrible deaths in Idaho after foraging on Japanese yew (Taxus japonica), which is considered invasive in some states. Hungry bears also have been poisoned in Pennsylvania by English yew (Taxus baccata), and other animals—including livestock and people—can also be poisoned. Instead of nonnative yews, we can plant regional/local yews that wildlife coevolved with. The Pacific Northwest’s yew, Taxus brevifolia, which provides food and cover for many wild species, is the best choice from British Columbia to northern California and east to Montana, at mid to high elevations. Sadly, this attractive understory shrub that grows beneath conifers is in trouble due to over-harvesting for medicine, as well as the logging industry.

Hard work pays off
Recent research from the Seychelles, an archipelago in the Indian Ocean, shows that sweat and funds invested in eradication can pay off for all sorts of pollinators (bees, butterflies, beetles, birds, reptiles), for the native plants themselves, and for the whole ecosystem. Following the removal of nearly 40,000 invasive shrubs on four mountaintops on one island, researchers monitored the remaining native plants for visits from pollinators. Eight months of observation later, “Ecosystem restoration resulted in a marked increase in pollinator species, visits to flowers and interaction diversity.” Essentially, even during the rather short test period , it was found that both the number of pollinators and their interactions with plants and each other were over 20% higher in the test areas than in control plots (where the invasive shrubs had been left alone). And, the test area native plants also produced more flowers and fruit than those in control areas. Restoration works!


WHAT YOU CAN DO

Eradicate them (go on, git!). Early detection and removal  is crucial to stopping an invasive plant in its tracks, especially if you live near a natural area. To make it feasible, and If you have a variety of invasives, pace yourself—perhaps get rid of one species a week (or one a month or season, depending on the infestation). I strongly recommend forgoing pesticides and manually digging them out whenever possible. Digging when the soil isn’t saturated is best, to prevent destroying the soil structure that results when working wet soil. And if your arch-enemies grow on a slope, be sure to replace them with native erosion controllers (Oregon white oak, madrone, oceanspray, red-twig dogwood, Nootka rose, salal, sword fern, etc.) as soon as you can.

At the very least, cut stems off at the soil level well before plants go to seed (it can happen quickly!). Some species can then be covered with a dark sheet (not plastic, which will prevent moisture from reaching the soil and kill soil life), to block out light. Left for 6 months to a year, it will prevent photosynthesis; afterwards, check to see if you need to dig out any more live roots. Persistence usually pays off. In hard to reach places, repeatedly cut down or yank out leafy stems—eventually the plant will die from the lack of energy that sunlight provides. The morning glory vines that come from under a dense shrub in my yard get weaker every year because we continually pull out what we see. I seriously think this year may be their last.

One exception to the get-it-out-as-fast-as-you-can rule: If the invasive plants are providing some habitat for wildlife (nesting sites or food or cover),
do a soft eviction and take them out incrementally, rather than all at once. This will avoid completely eliminating the habitat and causing undue stress to wildlife.

Herb robert (Geranium robertianum) an invasive plant

Stinky Bob: Pretty, but very assertive in natural areas & gardens.

Remember that some seeds can survive for many years. When I first started gardening in my yard, there were a lot of Robert’s geranium (Geranium robertianum) a.k.a. “Stinky Bob”. Dutifully I pulled all the plants before seeds had set, but the next year they were back due to the previous year’s seeds. I pulled them again and again, always before they flowered. Fifteen years later, I’m still pulling, but this year there were only two plants. Moral of the story: some seeds can stay viable a very long time, so don’t you dare let up on your weeding. But of course neglected neighboring yards can supply seeds as well, so it’s a continual process. Before planting natives, wait at least a season after the initial removal. Weed again, and then plant. It may not eliminate the seeds, but it should cut down on future sprouts and will give the natives the best chance at taking control again.

Know what you’re planting. Don’t buy newly introduced plants that lack a track record, or seed mixes that may contain invasive seeds, especially ones labeled just “wildflowers.” If you want a wildflower meadow or prairie-style garden, buy only seeds that you know are native to your location and you won’t have to worry. Even though many native “pioneer species” (especially annuals) can be quite assertive, if they spread enthusiastically they won’t wreak havoc on the environment. Species from different regions of the country can be problematic, not just those from Europe or Asia, so go with local native plants whenever possible.

Speak up if you notice plants for sale that are problematic.  I’ve seen Arum italicum and Vinca minor and many others for sale at local retail nurseries, even though they’re on my city’s Nuisance List. (And I’ve seen Stinky Bob, too!) You see, just because plants are deemed invasive or a “nuisance” species, doesn’t mean they can’t be sold—the only plants that are illegal to sell in a particular state are those that have been officially listed as a state noxious weed. But if enough of us educate retailers, hopefully they will pull the plants from their catalog/stores.

Besides eliminating invasives in our yards, we need to be very careful about what we’re dragging into natural areas on our hiking boots or sneakers. Plant material like seeds can get stuck in the tread of shoes, and some stick like velcro to laces, like the seeds of the aptly named forget-me-not. And backpacks and pant cuffs can harbor and release seeds, as well as dogs’ paws and fur. When I encountered Stinky Bob in a beautiful natural area last year in the Columbia Gorge; it had already spread over a slope as big as my back yard. No doubt someone unknowingly carried the seed there and the plant that resulted liked it there—a lot.

Tell others about the harm that invasives pose.

Join a local invasive plant eradication effort.

♦ If you see infestations in natural areas report them to the local soil and water conservation district or to a invasives hotline like Oregon’s www.oregoninvasiveshotline.org.

Better choices
Depending on your location and conditions, what are some possible native substitutes for the overzealous travelers, once they’re removed? For English ivy (and cultivars), consider salal (Gaultheria shallon), kinnikinnick (Arctostaphylos uva-ursi), sword fern (Polystichum munitum), star-flowered false solomon’s seal (Maianthemum stellatum), inside-out flower (Vancouveria hexandra), or Cascade Oregon grape (Mahonia nervosa). Himalayan blackberry might be replaced with thimbleberry (Rubus parviflorus), salmonberry (Rubus spectabilis), or black-cap raspberry (Rubus leucodermis var. leucodermis). Arum could be succeeded by false solomon’s seal (Maiantheum racemosum) or vanilla leaf (Achyls triphylla). Vinca could be ousted by piggyback plant (Tolmiea menziesii), broadpetal strawberry (Frageria virginiana), or oxalis (Oxalis oregana or O. suksdorfii). And Stinky Bob might sublet his space to Western bleeding heart (Dicentra formosa), Oregon geranium (Geranium oreganum), or licorice fern (Polypodium glycyrrhiza).

Herb robert

This huge clump of Geranium robertianum (Stinky Bob)—that’s pushed out native species—probably started with just one seed.

 

© 2017 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Plant Profile: California hazelnut (Corylus cornuta var. californica)


Corylus cornuta var. california (leaves)
Flowers in January?
You bet. Although they’re not showy blossoms that attract most people searching for signs of spring, the flowers of California hazelnut are a truly welcome sight in mid-winter to spring. Hazelnuts are monoecious plants, having both soft-yellow male catkins that dangle off the tips of leafless branches, and tiny feathery clusters of red stigmas—decidedly female—that are few and can be difficult to see. Due to their timing and structure, they are pollinated by wind, not insects.

Corylus cornuta var. california catkins

California hazelnut is a deciduous, multi-stemmed woodland shrub (or small tree), beautifully textured with soft-green, saw-toothed, velvety leaves that adorn arching branches. In autumn they turn a glowing yellow or gold. Besides its seasonal aesthetic interest, there are the hard-shelled, edible nuts, which typically mature in late summer to early fall.

A member of the birch family, California hazelnut’s botanical name originates from both Greek and Latin. The genus Corylus comes from the Greek korulos, which means “helmet” and refers to the nearly impenetrable husk on the top of the nut. The epithet, cornuta, means “horned” in Latin and refers to a beaklike point formed by the bracts, or husk, that enclose the developing fruit.

Corylus cornuta var. californica

How it grows
The variety californica naturally occurs in southern B.C., in most counties within Washington and Oregon west of the Cascades (as well as Wallowa County in NE Oregon), and south to central California. A second variety,  Corylus cornuta var. cornuta, commonly known as beaked hazelnut, makes its home east of the Cascades and throughout a large portion of the U.S. According to the US Forest Service, although California hazelnut doesn’t naturally grow with other native hazelnut species, “hybridization is possible in the Willamette Valley of Oregon and other locations where it grows adjacent to European filbert (cultivars of C. avellana) orchards.” Corylus americana (American hazelnut) grows in the central and eastern U.S.

Wildlife value
Many wild species eat and disperse the nuts. Rabbits and deer eat leaves and sprouts. Cover is provided for many species of birds as well as mammals.

Try it at home
California hazelnut typically can be found on moist rocky slopes or riparian areas in the understory or edge of mixed forests at low to middle elevations. It doesCorylus cornuta var. california hazelnut well in sun to shade, and prefers moist but well-drained, somewhat acidic soils with a decent amount of organic matter. It tolerates clay soils but not poorly drained sites. Useful for erosion control on slopes, it will eventually form a thicket. Suckers may be removed in winter (during dormancy) to form more of a treelike habit, but the habitat created by thickets favors many wild animals, especially birds seeking cover, so consider just leaving them to their natural habit.

Mature size varies from 10 feet to 20 feet tall, possibly more with advanced age. Spread is typically 10 to 20 feet, but often on the low end in garden situations. Since chipmunks, jays, and squirrels love the nuts, I suggest you grow as many of these charming shrubs as possible (if you want to have the chance to taste them!). Growing more than one shrub also increases pollination, which leads to more nuts per plant. Space them 10 to 20 feet apart (on the low end if you want some density). Though this shrub is quite drought tolerant when established (2 to 5 years), water it deeply but infrequently in the hot summer months thereafter, especially if your site receives a lot of sun or reflected heat.

Squirrel watchingTo grow this plant from seed, collect nuts in late summer or early fall while the husks are still a bit green. Plant them outdoors, an inch or two deep (but make sure a little squirrel isn’t watching you do it!). To make sure they’re viable, place them in some water first; toss them if they float. Plants can also be ground layered or propagated by semihardwood cuttings in the fall, or division of suckers in early spring.

California hazelnut is a good substitute for European hazelnut or English hawthorn.

Grab a partner
Because California hazelnut grows in a variety of plant communities, it gets along well with many other species. Choose partners that would have likely grown in your area. In the Douglas-fir/western hemlock ecoregion, consider red alder (Alnus rubra), vine maple (Acer circinatum), salal (Gaultheria shallon), thimbleberry (Rubus parviflorus), sword fern (Polystichum munitum), deer fern (Blechnum spicant), and woodland strawberry (Frageria virginiana or F. vesca), among others. In the grassland and oak woodland areas of the Willamette Valley, Puget Trough, and Georgia Basin, grow it with Oregon white oak (Quercus garryana), Oregon ash (Fraxinus latifolia), cascara (Rhamnus purshiana), and red-twig dogwood (Cornus sericea), inside-out flower (Vancounveria hexandra) and others. In the southern Coast Range and mountainous areas of southwest Oregon, include tanoak (Lithocarpus densiflorus), madrone (Arbutus menziesii), and serviceberry (Amelanchier alnifolia).

As always, buy plants propagated from source material that originated as close as possible to your site. Using such “local genotypes”  helps ensure that you get plants that are well adapted to your area and preserves genetic diversity that helps plants (and animals) adapt to changing conditions. Ask growers and nurseries about their sources if you’re unsure.

© 2017 Eileen M. Stark

To leave a comment, click on post’s title

A Winter Treat for Wild Birds: Plant-Based Suet

Black-capped chickadees love peanut butter-coconut oil suet!

Back by popular demand, here is my vegan “suet” recipe for wild birds trying to make it through cold weather. While the insects, fruit, or seeds provided by native plants are the best way to feed birds (birds who eat at feeders are more likely to get sick and spread disease), there are times when they could use some help getting through frigid days and nights. Small birds especially, with their remarkably rapid metabolism, need to find enough calories for the day but also build up fat reserves to get through their lengthy nighttime fasts—all in the course of the minimal daylight hours of winter. Young birds have it the toughest since they have to compete with mature birds who have better access to food and roosting sites. Despite their amazing abilities to get through cold stormy winters, some do die during especially stressful times.

Yellow-rumped warbler with a mouthful

This “suet” contains a lot of fat and protein and seems to be more appealing to birds than the traditional, animal-derived suet. It also lacks the probability of antibiotic and who-knows-what-else contamination, and the gross factor (Wikipedia describes “suet” as “the raw, hard fat of beef or mutton found around the loins and kidneys.” Mmmm … ). And, the fats in this recipe used in place of the dead animal lipo—especially the coconut oil—pack in the health benefits.

This recipe also helps you avoid participating in the sheer misery and environmental destruction associated with factory farming. Of course, other solid fats have their pitfalls. I passionately avoid palm oil—the cheap fat linked to tropical deforestation, habitat degradation, climate change, animal cruelty, and indigenous rights abuses in the countries where it is produced—which seems to be found in almost every product under the sun these days. And while coconut oil, which I combine in this Bushtits awaiting their turn at the suet feederentree with peanut butter, is far from a perfect ingredient, it is slightly less problematic, especially if you buy organic and fair trade.

 

Which birds might flock to this suet? In my yard, a lone, very bossy male yellow-rumped warbler (“Rumpy,” pictured above) makes a point to come back every winter for “his” suet, but northern flickers, downy woodpeckers, bushtits, chickadees, juncos, and song sparrows are common patrons as well (with Rumpy’s permission, of course). Bewick’s wrens also occasionally drop in for lunch, as do a pair of golden-crowned sparrows.

vegan suet ingredients
Here is the recipe for one “cake.”
Bonus points if you use organic ingredients!

¼ cup coconut oil, preferably unrefined
¼ cup unsalted peanut butter, preferably chunky
⅛ cup + 1 tablespoon raw, unsalted sunflower seeds
⅛ cup + 1 tablespoon raw coarse corn meal (polenta)
⅛ cup + 1 tablespoon raw millet, hulled or not
2 tablespoons chopped raisins or other dried fruit, optional
Additional chopped unsalted peanuts or nuts, optional

Directions: Gently warm coconut oil over very low heat just until it starts melting. Stir in peanut butter, then other ingredients. Spoon into a mold (small plastic storage containers work well) that will fit your feeder. Cover and freeze for several hours before popping it out of the container and placing outside.

TIPS:
♦ This suet is intended only for cold weather and will begin to soften at temperatures above 55º F or so. It will become a drippy mess if subjected to sunlight in such weather.
♦ To prevent disease transmission, be sure to scrub suet feeders with hot soapy water and rinse well before refilling.
♦ Place all bird feeders either within 2 feet of your house or at least 25 feet away, to reduce the chance of window strikes.
♦ Rotate bird feeder positions to reduce the likelihood of birds eating poop-contaminated food on the ground, and if you have more than one feeder, space them apart to keep birds from getting unnaturally close.
♦ To keep squirrels and other rodents at bay, install a pole with a squirrel baffle.
♦ Suet feeders with tail props are nice for flickers (large woodpeckers with long tails).
♦ Extra cakes may be stored in your freezer for several months.

downy female

 


© 2017 Eileen M. Stark

To leave a comment, click on post’s title

After a Storm: Dead Wood Gives Life

snaggy-stump

Following a particularly nasty ice and wind storm that damaged or took the life of many mature trees in Northwest Oregon, it’s time to clean up nature’s ragged pruning job and literally pick up the pieces. Or is it?

Clean up sparingly
If there are damaged limbs on a street tree or yard tree close to your house, hire a certified arborist to remove any dangling branches and clean-cut any ragged wounds and stubs left by breakage, particularly if you have a tree that is prone to disease, such elm-damage-ice-stormas an elm. Sharp cuts that don’t leave stubs (partially amputated branches not cut back to the branch collar that look like you could hang a hat on it) will allow for faster healing and may prolong the life of the tree. But if safety is not an issue, consider that natural, important habitat is created when damaged limbs are simply left on the tree. As I wrote in my book, “interactions between wildlife and decaying wood are fundamental to ecosystem functions and processes in forests, aquatic habitats,” and your garden, whether they be wooded or more open.

We’re usually far too eager to clean up and remove anything and everything that’s fallen to the ground to keep our yards neat and orderly. But this sort of maintenance can be harmful not
dead woodonly to our backs, but to dwindling wild species that need natural, woody “litter” and some disarray, not homogenous expanses of bare soil, bark mulch, or clipped lawn. Like fallen leaves, “dead wood” or “downed wood” is so essential that many creatures (and plants) cannot survive without it. So, instead of hauling away branches, logs, bark debris, stumps, twigs and such, be compassionate and leave it (or move it to an appropriate, out-of-the-way part of your yard) so that it can decompose naturally and begin to provide food, shelter, nesting material, or places to raise young. Decomposing dead wood has many other unnoticeable yet complex eco-functions, like supporting fungi that live in symbiotic relationships with plant roots. Eventually, the stuff that may look messy to us turns into fertile soil which supports plants which support insects which support birds, and so on.

Snags are a good thing snag at Smith & Bybee lakes

What about dead or dying trees? Known as snags, with their hollow cavities, broken branches, and loose bark, they actually may provide more varied habitat for all sorts of creatures than living trees do! In addition to providing essential housing for many types of insects (including pollinators), cavity-nesting birds, amphibians, reptiles, and small mammals (including bats), they provide food, open perches and double as storage lockers. Woodpeckers also use them to communicate during breeding season.

Snags are in very short supply as forests are increasingly decimated, and they’re rare in urban areas. Removing them not only steals crucial habitat; it’s expensive. Leave snags in low activity areas that won’t pose a problem if they fall apart; when they do fall they’ll continue to give back in the understory. If safety is a concern but you want to retain a dead tree’s benefits, consult with an arborist to shorten its trunk to snag with female flicker feeding youngroughly 15 feet tall and cut back branches. If that’s not possible and you must cut it down, leave the trunk on the ground where it won’t get in your way and retain the stump. If you already have a snag, retain or add native shrubs near its base. They will help keep it protected from weather extremes, provide connectivity, leafy cover, and additional forage for wildlife.

The Washington Department of Wildlife has more detailed info on these “wildlife trees” and the Cavity Conservation Initiative has an enchanting video that documents, up close, the lives that they support.

 


Designing with dead wood
Although some people view snags and other dead wood as unattractive, more and more of us see them as aesthetically pleasing natural sculptures, issued gratis to the landscape and priceless for wildlife. Keep them, work around them, and incorporatesnag "sculpture" them into your landscape, and the wild ones will thank you.

Consider grouping logs and branches in layered piles, with the largest at the base, in quiet places under trees where they can provide shelter from predators and roosting sites for little ones. Fallen trunks or massive logs can recline individually on the ground, where they might act as lovely focal points that will change over time, displaying dead wood (stump)the quiet beauty that unfolds during all stages of natural decomposition and regeneration. Imagine a “nurse log” in your own yard that will increase biodiversity by providing decades of nutrients and moisture to other plants and soil organisms. While natural, moss-furred nurse logs (fallen forest trunks and limbs) provide complex substrates for regeneration of trees in intact forests, there’s no reason you can’t foster similar function in your yard (but never remove nurse logs from a  forest). Surround a fallen giant with native ferns and other shade lovers to blend and complement, and the mystery and magic begins. It rots slowly at first, then begins to crumble away, providing more sustenance

for other species. After a few decades, the log will be reduced to nothing but fragments, but the soil—nurtured, enriched, and full of life—will pass on its riches.

A few plant species do best when growing on or next to downed wood. In the Pacific Northwest, Vaccinium parviflorum (red huckleberry), that deliciously berried shrub that hikers know and love, is almost always found growing on a stump, nurse log or other decomposing wood in forests. When I planted red huckleberry shrubs in my yard a few years ago, I buried some rotting wood in the planting hole and added dead branches and conifer cones on top of the soil. So far they seem to like it.

 

 

Nest boxes and more trees to the rescue
If you’re like most people and don’t have a snag or a mature tree with decay on your property, consider adding a species-appropriate nest box for cavity nesters like chickadees, chickadee nest boxnuthatches, woodpeckers, swallows or owls that is sited correctly and is accessible for annual cleaning.

Lastly, if you’ve lost a tree or have the space for one more, consider planting a regional native replacement (or two or three) that will thrive in the site’s conditions. We need to keep planting and protecting, so the cycle can continue.


© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Deer Fern (Blechnum spicant)

Blechnum spicant

Since winter is well on it’s way, this seems like a good time to give a nod to a distinctive evergreen fern that brings elegance and function to moist, west coast coniferous forests, as well as shady gardens. Deer fern, known botanically as Blechnum spicant, comes from a large, extended family known as Blechnaceae (the chain fern family). The genus Blechnum actually has fewer members north of the equator than south (most of which live in the steamy tropics), and a few of the Ecuadorian cousins managed to graduate to tree fern status, topping out at an impressive 10 feet tall! But our sweet little deer fern pays no mind to their staid accomplishments and remains forever a trim, squat forest gem with many friends and admirers.

The Latin Blechnum comes from the Greek Blechnon, an ancient name for ferns, while spicant means “spikelike.” Its spikes are fertile fronds (which can be seen in the top photo) that rise vertically above the more earthly sterile fronds that produce no spores. Leaves on both types of fronds have oppositely arranged, shiny leaflets; the fertile ones are much narrower and have two rows of sori on their undersides. Deer fern looks attractive year round and its leaves often develop a coppery-red color in early spring.

Blechnum spicant

How it grows
This long-lived fern naturally occurs in southern Alaska, coastal British Columbia, Washington and Oregon (west of the Cascades), northern Idaho where it is classified as imperiled, and coastal California, as far south as Santa Cruz county, as well as the Sierra Nevada. It also occurs in parts of Europe. In western Oregon and Washington it grows from sea level up to montane zones and dominates the understory of what remains of moist, old-growth forests, as well as second-growth forests.

Wildlife value
As you might expect, deer fern satisfies the winter hunger of deer, but also elk, caribou, moose, mountain goats, and bighorn sheep, especially in winter. It also provides year-round cover for small birds, mammals, insects, and other creatures. Birds may use the leaves as nesting material.

Try it at home
This fern spreads by thick, short, creeping rhizomes, and the key word here is short—as in stubby—which means they don’t spread nearly as fast as I would like. They prefer the misty air created by mature forest giants, the soft, moist, crumbly soil that comes from centuries of fallen detritus, and the symbiotic support of a real forest, not the drastically altered state of rectangular urban patches with hard, compacted soils and blistering heat. But don’t let that discourage you if you have nearly the conditions deer ferns need: shaded, relatively moist, somewhat rich soil beneath the protective canopy of (preferably native) conifers. A little dappled sun is fine if you can provide some supplemental water (especially when they’re young), but don’t try to grow them in bright, sunny places where even a sword fern might struggle. Allowing for a nice thick layer of compost or other organic matter (such as fallen leaves that break down by fungus and microscopic creatures) will help maintain moisture around their roots and add nutrients to the soil.

Although deer ferns are handsome close up as focal plants, they are at their loveliest when grown en masse as a ground cover. Since they grow to about two feet tall and wide, space them about two feet apart. Or, consider placing them a bit further apart and add the companionship of other native ground cover species that can nestle in between the ferns—this looks the most natural and will help keep down weeds and protect the soil.

Deer fern is a good sub for nonnative invasive plants such as English ivy (Hedera helix) and bittersweet nightshade (Solanum dulcamara).

deer fern & friends

In my backyard, deer fern mingles with maidenhair fern, piggy-back plant, and red-twig dogwood, all under the watchful eye of a youthful western redcedar.

Grab a partner
Deer fern partners with many other species that grow together within certain plant communities. It thrives with native conifers, and in the Pacific Northwest they may include western redcedar (Thuja plicata), western hemlock (Tsuga heterophylla), Douglas-fir (Pseudotsuga menziesii), grand fir (Abies grandis), noble fir (Abies procera), Sitka spruce (Picea sitchensis), and coastal redwood (Sequoia sempervirens). Deciduous trees like red alder (Alnus rubra) and vine maple (Acer circinatum) also make the cut. Understory species often found growing with deer fern include red huckleberry (Vaccinum parviflorum), thimbleberry (Rubus parviflorus), salal (Gaultheria shallon), devil’s club (Oplopanax horridus), queen-cup (Clintonia uniflora), false Solomon’s seal (Smilacina racemosa), Hooker’s fairy bells (Disporum hookeri), foamflower (Tiarella trifoliata), stream violet (Viola glabella), wild ginger (Asarum caudatum), piggy-back plant (Tolmiea menziesii), bunchberry (Cornus unalaschkensis), other ferns—such as western sword fern (Polystichum munitum), ladyfern (Athyrium filix-femina), and oakfern (Gymnocarpium dryopteris)—and various mosses.

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Red-twig Dogwood (Cornus sericea)

Cornus sericea ssp. occidentalis

Red-twig dogwood is one of those multitalented shrubs that grows in a variety of moist habitats and keeps us enthralled year round. Also known as red osier dogwood and creek dogwood (among other common names), it is a multi-stemmed, deciduous, long-lived and fairly fast-growing shrub that develops into an open, somewhat rounded thicket. Its common name comes from signature reddish stems which become brightest in winter. Botanically speaking, it’s known as Cornus sericea (syn. Cornus stolonifera). Sericea comes from the Latin “sericatus,” which means “silky” and describes the soft texture of the leaves and young twigs. Stolonifera refers to its lower stems or branches that tend to tiptoe horizontally and grow roots when they touch the soil.

Besides its vibrant red stems, this plant has oppositely-arranged, deep green leaves that turn an array of colors as the days shorten in autumn. On this sunless late November day in my back yard, the leaves range from a soft gold and pale orange to deep red, and they’re becoming more purplish-red each day. Come spring, four-petaled creamy white flowers will appear in clusters in May to July and will be tailed several months later by soft white to pale blue fruit that may persist into winter if the birds don’t devour them.
Cornus sericea

How it grows
Red-twig dogwood has a large range—from Alaska and northern Canada from coast to coast, and as far south as Virginia in the east and Chihuahua, Mexico in the west, at low to middle elevations. There are two subspecies: C. sericea ssp. occidentalis, which occurs in the Pacific Northwest, Alaska, California and British Columbia, and C. sericea ssp. sericea, which is found much more widely. Differences are miminal, with the latter having slightly larger flower petals and fuzzier leaves and shoots. Both typically occur in moist, open sites such as meadows, bogs, floodplains, and near shorelines, but they also can be found under forest canopy as well as within more open woodlands in or close to riparian areas.

Wildlife value
Red-twig dogwood is important for providing diverse structure, cover, nesting habitat, and a variety of edibles for insects, mammals, amphibians, and a large number of bird species. Bees and other pollinators, such as butterflies, use the flowers for nectar and/or pollen. Birds (including waxwings, thrushes, band-tailed pigeons, and grosbeaks), small mammals, and bears dine on its fruits—one or two-seeded drupes which are reportedly very high in fat—in summer and fall. According to the US Forest Service, “moose, elk, deer, bighorn sheep, mountain goats, beavers, and rabbits” commonly browse the stems; twigs and new shoots provide especially delectable and nutritious winter browse. Last, but not least, this shrub provides cover and important nesting habitat for songbirds, small mammals and frogs, as well as host plants for butterflies like the echo blue butterfly.

Cornus sericeaTry it at home
Although it’s fairly shade tolerant, plants growing in full sun typically grow much more compactly than those in shade, usually bloom more profusely, and often exhibit more stem color. Depending on the amount of sun it receives, red-twig dogwood can grow from about 6 to 16 feet tall, and nearly as wide, so it may be best to leave it out of very small gardens. If you have the space, use it in any moist area where you’d like spectacular aesthetic appeal as well as valuable wildlife habitat: at the back of a border, next to a rain garden, as a somewhat open screen, as part of a large hedgerow, or to stabilize eroding soil on slopes. Add some leaf compost if your soil is in poor shape, and plant it in the fall to give it an easy start in life.

Damp soil is important, and slow-draining soil is not a problem (though it shouldn’t have its feet immersed in water for prolonged periods). Although its tolerance for drought isn’t terribly high, with a little shade and soil that’s rich in organic matter, infrequent summer watering should be all that is needed once it’s established (typically just a couple of years). And, I’ve read that allowing for a dry period at the end of summer is actually a good (and natural) thing (as long as the plant looks healthy), since it prepares the plant for winter. Red-twig dogwood is often planted at restoration sites, which are rarely watered afterwards, and most usually do fine.

Grab a partner
Since red-twig dogwood grows in such a wide range of habitats, there are a number of plant friends with which it would like to live. For best ecological and gardening results, choose associated native plants that live in communities that currently grow or likely would have grown in your immediate area. In the Pacific Northwest, some of the plants that closely associate with red-twig dogwood include western redcedar (Thuja plicata), Douglas-fir (Pseudotsuga menziesii), vine maple (Acer circinatum), alder (Alnus spp.), willow (Salix spp.), aspen (Populus tremuloides), paper birch (Betula papyrifera), gooseberries (Ribes spp.), black hawthorn (Crataegus douglasii), lupine (Lupinus spp.), aster (Symphyotrichum spp.), and many others.

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

 

Reimagining the Ecological Value of Cities for Dwindling Pollinators

Bombus vosnesenskii

A recent literature review on the ecology of urban areas published in Conservation Biology offers irrefutable evidence that cities can and ought to be havens for wildlife, specifically pollinators. In “The City as a Refuge for Insect Pollinators,” the authors, a group of multidisciplinary scientists from around the world, recommend that urban areas—particularly fast growing ones—be managed to support biodiversity.

Habitat loss, degradation and fragmentation, industrial farming, wildlife diseases, and widespread use of toxic pesticides have wiped out and continue to wipe out many insect pollinator species. Along with other invertebrates, we really don’t know how many are disappearing from the earth forever. Since urban sprawl is one main reason for the shocking loss of biodiversity, it’s unsurprising that historically, the consensus—even among conservationists—has been that cities can’t or don’t need to support wildlife. But many years of research on wild bees in urban areas proves that cities can or still do supply habitat for both pollinator abundance and diversity, and “in several cases, more diverse and abundant populations of native bees live in cities than in nearby rural landscapes.”

While we certainly need to restore and protect rural and suburban lands, there’s a growing realization that “pollinators put high-priority and high-impact urban conservation within reach,” writes the team. “The relatively small spatial and temporal scales of insect pollinators in terms of functional ecology (habitat range, lifecycle, nesting behavior compared with larger mammals for example) offer opportunities for small actions to yield large benefits for pollinator health.” Small actions: they’re talking about you and me, as well as city planners. As the authors note, many residents understand the urgency and necessity, and are willing to help. Turning our yards into “real” Cedar waxwing in red-flowering currantgardens, complete with native plantings and other elements that support entire life cycles of local biodiversity, ought to be paramount. Priceless benefits to us (crop pollination and a chance to admire nature’s beauty), to countless other species that rely on plants or insects for food, and to plants (pollination), come with the package.

Urban conservation often aims to connect people to nature. This is, of course, a good thing, since nature education is extremely important—it’s been said many times that the more we learn about wildlife and natural processes, the more we will want to protect it. But if more effort was spent on wildlife itself and giving it what it needs (large, undisturbed, interconnected areas of native flora), I have no doubt that many species would be much better off. I always feel a need to apologize to startled birds and little mammals I encounter on walks in natural areas around the city. There’s a reason wildlife refuges often close off sections to pedestrians: many species are hypersensitive to human presence; they see us as predators and the stress does them harm. It would be immensely beneficial if parts of urban areas were also simply left to the wild ones.

I can’t agree more with the authors. If we want to recover and protect pollinators and other wildlife globally, we need to tend to their needs locally. It will take policy makers, planners, and environmental managers, but also each of us, whether we work individually or engage with community organizers.

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Western Wild Ginger (Asarum caudatum)

Asarum caudatum

Western wild ginger (Asarum caudatum) is an understory plant that offers both wonderful texture in the form of deeply veined, evergreen, aromatic leaves that carpet the soil in shady conditions, and unusual, secretive flowers. The genus Asarum has about 17 species found in North America, China, and Europe; the name is the Latin form of the Greek asaron, of obscure origin. The species epithet, caudatum, means “tailed” and refers to the wispy, almost whimsical appendages of the sepals, which protect the flower.

And what a flower! Burgundy, with a brownish tinge, and almost otherworldly in appearance, they appear from April to July in Oregon. You may not even notice them unless you’re weeding on your hands and knees, or if you make a special point to seek out their intricate beauty. With charming little tails, a three-cornered shape, and a hairy cup that conceals the real flower, they are one of nature’s hidden little gems, observable only to soil dwellers or those two-legged creatures with a spirit of curiosity.

Asarum caudatum

How it grows
Western wild ginger is an often overlooked but ubiquitous member of various forest communities at low to middle elevations, from British Columbia south to California, and as far east as western Montana. These communities have substantial tree cover and rich soils and occur in areas with mild, wet winters and warm, dry summers, on fairly flat to moderate slopes. The available literature suggests that while wild ginger is not a “pioneer species,” it occurs in most successional communities, including serial stages that have some overstory canopy. In other words, they grow with other forest species that didn’t pop up overnight and won’t be found in recently disturbed areas, like clearcuts, burns, or landslides.

Wildlife value
The lustrous evergreen leaves provide protection for little insects and other tiny creatures that frequent the forest floor, which may in turn supply food for some bird and herp species. The flowers attract beetles which pollinate them (along with flies and gnats), as well as ants that are attracted to a fleshy appendage on its seeds, which contains an oil. And it is thought that the plant may sustain native rodents in some parts of the region.

Try it at home
Wild ginger is a ground cover that creeps slowly by shallow, fleshy rhizomes; the closer you space plants, the faster they will fill in (generally, two to three feet apart is adequate). In addition to reproduction via rhizomes, it sometimes spreads by seed, thanks to ants: After they dutifully and mightily drag an entire seed back to their nest, the oil is removed and the remainder of the seed, still viable, is discarded onto the soil.

Optimal growing conditions are moist and rich soil. If you already have a woodland garden complete with mature conifers, your soil will probably be adequately acidic and fertile (unless you’ve been removing leaf litter and such that should be allowed to stay!). If your soil is lacking in organic matter, or the top soil is shallow, add some compost as mulch (leaf compost is good).

Since wild ginger prefers moist soil, keep new plants adequately hydrated for at least the first couple of summers, especially if your site lacks many trees or is subjected to sunlight or heat. Plant it in the fall for best results.

Wild ginger is a possible substitute for the invasive Bishop’s weed (Aegopodium podagraria).

Grab a partner
Wild ginger is a choice perennial for beneath native conifers like Douglas-fir, western hemlock, Sitka spruce, grand fir, white pine, and western red cedar, as well as deciduous smaller trees and shrubs such as red alder, vine maple and California hazelnut. It’s exquisite growing amongst smaller associated species such as sword fern, deer fern, goatsbeard, foamflower, trillium, and many others.

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Foamflower (Tiarella trifoliata)

           Tiarella trifoliata var. trifoliata    

Tiarella trifoliata, commonly called “foamflower,” is a lovely woodland perennial within the Western hemlock/Douglas-fir plant community of the Pacific Northwest. Besides having beautiful, soft green leaves that are often divided into 3 leaflets, its sprays of delicate flowers—of the palest pink—bloom on leafy stems for an amazingly long time: from May to September. Really!

How it grows
This charming plant can be found in damp, shady forests, and near streams. It has rhizomes but doesn’t spread like typical ground cover plants; in fact, you’re more likely to find it self sowing than spreading speedily underground. There are three varieties: Tiarella trifoliata var. trifoliata, is found mainly west of the Cascades as well as in southern Alaska and British Columbia, at low to middle elevations. T. trifoliata var. unifoliata occurs on both sides of the Cascades, west to Montana, and in B.C. and northern California, typically at higher elevations; it has more deeply lobed leaves. T. trifoliata var. laciniata, has a small range—only a few counties in Washington and Oregon and parts of B.C.; its leaves are maplelike and are shallowly lobed. The one you’re most likely to find for sale is T. trifoliata var. trifoliata. The other North American foamflower is T. cordifolia, native to the eastern U.S.

Wildlife valueTiarella close-up
Foamflower’s clusters of tiny blossoms provide pollen and nectar for native bees and syrphid (flower) flies. Seeds may be eaten by birds. Foliage provides cover for very small creatures and protects the soil.

Try it at home
Maturing at about a foot tall and wide, it’s best grown en masse in the shade (or partial shade) of conifers where the soil is well-drained but naturally rich (or has been amended with organic matter, like compost), as well as along shaded pathways or near ponds and streams. Grow it with associated species such as Douglas-fir, western hemlock, western red-cedar, vine maple, serviceberry, oceanspray, thimbleberry, sword fern, salal, Cascade Oregon grape, inside-out flower, oxalis, and many others. Plant this gem in the fall for best results. If it’s not grown in a moist ares, keep it happy with supplemental water during dry periods and it will self sow, but only in the most polite way.

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: White spiraea (Spiraea betulifolia var. lucida)

Spiraea betulifolia var. lucida

Even though it’s growing and thriving in my front yard, it took an October trip to northeast Oregon’s Wallowa Mountains to remind me why I love white spiraea (AKA shiny-leaf spiraea or birch-leaf spiraea), or botanically speaking, Spiraea betulifolia var. lucida. In Latin, lucida means “bright,” or “to shine,” and shine it does.

Uncommon, small (as shrubs go, to about 3 feet tall), erect and deciduous, it’s a very attractive native plant that spreads slowly by rhizomes. Though its seeds are also perfectly capable of reproducing and may be distributed by birds, rodents, or wind, I find it’s not a strong self-sower.

Besides its small stature that allows it to fit into tight spots, it has many other attributes and I can’t imagine why it’s not planted more often in yards and gardens. It’s barely mentioned in my book, so here I give it its due.

In late spring to early summer, creamy white flowers—sometimes with a pale pink blush—show up in flat-topped clusters, from 2 to 5 inches wide. With occasional deep summer watering, it will sometimes bloom during late summer and even autumn. And as the flowers mature they offer lovely, although fairly inconspicuous, golden brown seed heads that continue to captivate.

Spiraea betulifolia var. lucidaBut the best is yet to come. Fall may be its prime season when oval to oblong toothed leaves turn lovely shades of gold, orange, red, and burgundy. The entire little shrub lights up like a flame above the dark, moist soil and fallen leaves beneath it.

 

How it grows
White spiraea naturally occurs in parts of western Canada, Washington and Oregon, and as far east as Minnesota. It grows along streams and lakes, in mountain grasslands and on the slopes of forests (especially rocky ones) both east and west of the Cascades, from sea level up to about 4,000 feet, although it can be found at higher elevations in moist forests. Since it’s best to grow native plants that are indigenous to your area, find out whether it occurs naturally in your county with this USDA map.

Last week I was pleasantly surprised to find it in the Wallowa-Whitman National Forest along the Wallowa Lake Trail and the Hurricane Creek Trail near Joseph, Oregon, in forested areas. Since these areas can get quite dry in summer the plant’s drought tolerance is likely due to its rhizomatous ways. Often surviving in burned areas, fire kills the aboveground part of the plant, but it resprouts from “surviving root crowns, and from rhizomes positioned 2 to 5 inches (5-13 cm) below the soil surface,” according to the US Forest Service. Along the Hurricane Creek Trail, which meanders through a burned area, white spiraea was joined by “pioneer” species like western yarrow (Achillea millefolium var. occidentalis), and western pearly everlasting (Anaphalis margaritacea).

Wildlife value
The flowers—often with an extended bloom time—offer pollen and/or nectar for pollinators such as native bees, syrphid (flower) flies, butterflies, wasps, and ants. Leaves and branches offer a bit of cover for small creatures, and fallen leaves protect the soil and overwintering invertebrates, which provide food for myriad other species. It’s reportedly rather unpalatable to mule deer and elk, for those of you wanting native plants that won’t disappear overnight.

Try it at home
White spiraea is a fantastic little shrub that can be used in the places that a large shrub would outgrow in a few years. It’s also quite versatile when it comes to both light and moisture conditions. It can handle quite a bit of shade to a fair amount of sun, but seems to do best in part shade. A restoration project in Montana found that the plants did much better on east or south-facing slopes, rather than west-facing slopes with hot afternoon sun. At the Portland community garden where I have a plot for growing veggies, white spiraea was planted (before I acquired my plot) in native beds that border the garden. The beds provide a little test because the sunlight that reaches them varies from just a few morning rays to about a half day of sun to nearly all-day sun. Echoing the Montana study, the spiraeas that thrive are in the partly shaded area; many of the ones planted in a narrow sunny strip along a hot concrete walkway died due to heat and drought, while those that remain in that strip just barely hang on despite my best efforts with extra water and compost.

Spiraea betulifolia var. lucida

Plant them about 3 feet apart and at least 3 feet from walkways, since they will eventually spread and you don’t want to be constantly pruning them back. Amending soil with some organic matter (like compost) will help them get established, although they are quite tolerant of clay soil, and they do well with rocks. Mulch them with a natural mulch (like leaves) and keep them well watered the first 2 to 3 years, after which they should be quite drought tolerant (unless you have them in hot afternoon sun, which I don’t advise!).

Grab a partner
Grow white spiraea with associated species that also naturally occurred in your area, to help provide an eco-functional space for wildlife. It naturally occurs within Douglas-fir, grand fir, ponderosa pine, and lodgepole pine communities. Though shrubs and perennials in those communities are far too numerous to list here, consider serviceberry (Amelanchier alnifolia), red-twig dogwood (Cornus sericea), blue elderberry (Sambucus nigra ssp. caerulea), and Cascade Oregon grape (Mahonia nervosa). As always, buy plants that come from locally-sourced material at reputable nurseries.

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

 

Pacific Northwest Native Plant Profile: Graceful cinquefoil (Potentilla gracilis)

Potentilla gracilis with sweat-bees
Nicknamed slender cinquefoil or western cinquefoil, Potentilla gracilis is a perennial wildflower. It naturally occurs over much of western and northern North America at low to high elevations, mostly in moist prairie and savanna ecosystems, but also in open forests and subalpine meadows. Growing from a woody crown, it has sharply divided, oval, deep green leaves with hairy, silver undersides and somewhat erect inflorescences with bright to pale yellow five-petaled flowers that bloom from early to late summer.

Closely related species include Potentilla glandulosa (sticky cinquefoil), with cream to pale yellow flowers, and Potentilla pulcherrima, the latter of which grows in montane regions. P. pulcherrima (common name: beautiful cinquefoil) comes from the Latin pulcherrima, which means “very beautiful” (aren’t they all?). Both occur mainly in the western U.S. and Canada. There are many other species of Potentilla, but P. gracilis and P. glandulosa are the most common west of the Cascades and are the most likely to be found for sale at nurseries.

Wildlife value
Native bees, butterflies, syrphid flies, and other beneficial insects are attracted to the flowers. Graceful cinquefoil is also a host plant for the caterpillars of butterflies such as the two-banded checkered skipper. It is not attractive to deer.

Try it at home
Graceful cinquefoil does best in moist, well-drained soil that’s rich in organic matter, in full to part sun. Since it’s not a tall plant and only grows to about 2 feet wide, site it where it won’t be heavily shaded by other plants. You can also grow native cinquefoil in a container, but be sure it gets enough moisture. Associated species include Cascara and Oregon ash trees, and perennials such as checker mallow, Oregon iris, native lupines, and other moisture loving plants. Summer water is essential until it’s established, but even afterwards it will do best with supplemental water during the hot, dry part of summer.

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Cultivating Compassion in the Garden (and Beyond)

painted turtles

Whether they’re hidden within fur farms or factory farms or other atrocious places—mistreated and maligned for profit—or in plain sight and struggling within unraveling ecosystems that disappear a little more each day, the suffering of non-human animals due to our expansion and behavior is everywhere. On an ecological level, the most devastating consequence of our ubiquitous presence is the disappearance of wild species that just need to be left alone. They want to live on, and in peace, just as we do. They have just as much right to exist without harm and suffering as we do.

Habitat destruction (including that caused by climate change) is not painless and is the main threat to most wild flora and faunas: Less than four percent of original U.S. forests remain; oceans are dying; waterways are heavily polluted with toxics; a new study shows that in the past 20 years we’ve managed to destroy a tenth of the earth’s wild areas. Half of North American bird species are predicted to go extinct by the end of this century and some especially sensitive amphibians are already there. We’re the most invasive, destructive, and over-consuming species ever to walk the earth, and it’s costing us the earth, as well as our health and happiness.hermit thrush

Our big brains are burdensome as we thoughtlessly invent things that damage and destroy, but they’re also an asset when we realize our obligation to protect and sustain. Habits of exploitation can be broken. We can stop pretending that everything is fine or beyond our control, and realize that we are very much a part of nature. We don’t have to, for example, conform to having manicured, high maintenance, lawn-dominated landscapes that require massive chemical and fossil fuel applications just because other people have them. We can make choices based on caring what happens to those downstream, just as we wish those upstream would to do to us.

When our species was young, we weren’t separated from nature. Even now, within our bubbles that disconnect, we enter this world not with a fear of natural processes and wild creatures, but with an intense curiosity. But as kids we learn to be fearful—we’re taught to fear the proverbial “big bad wolf,” and trepidation of wildlife and natural processes continue throughout many people’s lives. Education can help change that, and even awaken us to the awe-inspiring, interconnected layers that nature has fashioned over eons of evolution.

Courtesy Predator Defense

Photo courtesy Predator Defense

Just as essential is empathy for other species (that is, looking at their world from their point of view, with compassion). It may be our most important capability and what is sorely needed to bring some balance to the earth’s members. When we allow empathy to guide our choices and practices, we act selflessly and gain empowerment along the way. Changing our ways isn’t always difficult and some changes can be very simple; it just takes some thought and a little motivation. With compassion we can defiantly say “no” to synthetic toxic chemicals crafted by mega corporations that discriminate against other species and seek to control the natural world, “no” to wasteful monoculture lawns, and “no” to merely decorative plants with zero wildlife appeal. We can say “yes” to planning gardens that not only look pretty but also benefit and sustain other species,  “yes” to keeping Fluffy and Fido away from birds, “yes” to keeping outdoor lights off and making windows visible to birds, and “yes” to initiatives and politicians that seek to preserve and protect natural areas. There are, of course, countless other ways to express compassion for the planet outside the garden.

It’s easy to think that the war against wildlife—from the microorganisms within degraded soil to persecuted predators trying to survive on a human-dominated planet—is happening somewhere “out there.” While a huge percentage of wild lands are dominated by livestock ranching that has “caused more damage than the chainsaw and bulldozer combined,” urban and suburban spaces—including the roughly 40 million acres of land that’s currently lawn—offer an important conservation opportunity and a way for us to personally provide for others right at home.

It’s equally easy to be pulled down by the ticking extinction clock, but once we turn our backs on conventional gardening, we become part of a conversion—or revolution, if you will—that is proactive. Learn how healthy, balanced ecosystems function; watch native plants (especially when grown with others that co-occur in the Native bumblebee on Vancouveria hexandraarea) attract and support a diversity of native insects and other creatures; recognize the  bees and the flower flies and the birds that depend directly or indirectly on those plant communities; discover their life cycle and how to keep them healthy and protected. Plant trees, let the leaves do their thing, allow the dead wood to stay, and forget about pesticides and synthetic fertilizers. If we do all that we’ll find ourselves more connected and caring even more about what happens within the dwindling, wilder ecosystems on this beautiful planet, and wondering how even more beautiful it will be if more of us empathize with others’ lives.

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

Pacific Northwest Native Plant Profile: Goat’s beard (Aruncus dioicus)

Aruncus dioicus (goatsbeard)

I finally managed to take out a very large hosta plant in my front yard. I really hate removing healthy noninvasive plants, however nonnative they may be (especially when they’re pretty), but we all know that “pretty is as pretty does,” right? Originating in northeast Asia, it really had no function here other than looking nice with those ultra-inflated leaves. I don’t think I’d ever seen a native pollinator on it’s blossoms, let alone a honeybee. Plus, it was overpowering a fern that belongs in this neck o’ the woods.

In its place now is a goat’s beard plant (Aruncus dioicus) that had volunteered in the back yard, courtesy its frisky goat’s beard parents. Also known as “bride’s feathers,” it is not only eye-catching while in bloom, but has local ecological function that hostas can only dream about. It also fits well into the shade-loving native spread near the north side of my house, sharing space with a surprisingly robust western maidenhair fern (Adiantum aleuticum), evergreen huckleberries (Vaccinium ovatum), Cascade Oregon grape (Mahonia nervosa), sword ferns (Polystichum munitum), and native ground cover that includes wild ginger (Asarum caudatum) and inside-out flower (Vancouveria hexandra), all of which can be found growing with goat’s beard in nature.

Aruncus dioicus foliageWith compound, pointy, toothed leaves that have a texture all their own, the plant is particularly fetching in spring when leaves are new. In early to mid-summer, the main show begins when tall, feathery plumes composed of tiny, creamy-white flowers rise above the foliage. Male plants are more spectacular in flower than female, but regardless of gender, it offers a lovely presence in shaded to partly-shaded borders, under tall trees, or as a deciduous screen or short hedge.

Wildlife value
Goat’s beard attracts quite a few insect species, including native bees, syrphid flies, teeny tiny beetles, and—if you’re lucky—mourning cloak butterflies (your odds will increase if you already grow their host plants, which include native willow, birch, hawthorn, and wild rose). Small birds may eat the seeds, so leave the spent flowers to overwinter.

Try it at home
Found in most of western Washington, Oregon, and northern California, goat’s beard naturally occurs along streams and in moist meadows and forests, but also sometimes in disturbed areas such as roadsides. As such, it likes moist, rich soil (add compost and allow nature’s mulch—fallen leaves—to remain on soil). Although it does best with at least a half day of shade, it can be grown in nearly full sun in cool, northerly locations. Goat’s beard eventually will form a large clump, 3 to 6 feet tall and as wide, so space plants four to five feet apart. Grow it with associates (those that naturally grow together and depend on each other), including Douglas-fir, western hemlock, western red cedar, vine maple, deer fern, maidenhair fern, inside-out flower, and western trillium. Enjoy!

 

© 2016 Eileen M. Stark

To leave a comment, click on post’s title

An Underappreciated Insect: The Syrphid Fly

Toxomerus occidentalis, female slurping nectar on Erigeron specious (showy fleabane)

Toxomerus occidentals (female), soaking up nectar on showy fleabane (Erigeron specious)


Beneficial in many ways, syrphid flies, also called flower flies,
are true flies in the order Diptera, family Syrphidae. Some can be recognized by their ability to dart around and hover in the air in one place, wings nearly invisible, as they search for flowers on which to feed—somewhat like a tiny helicopter, but with much more grace (this flair led to their other common name, hover fly). They come in various shapes and sizes (typically 1/4 to 3/4 inch); the tiny ones require a hand lens or macro lens to get a good look. And when you do, you’ll be amazed at the beautiful patterns and bright colors that often serve to mimic dangerous looking bees or wasps and fool predators like birds into leaving them alone (but don’t worry, they couldn’t sting you if they wanted to!).

Syrphids in the genus Spilomyia often mimic wasps, with vivid yellow and black patterns and modified antennae.

Syrphids in the genus Spilomyia often mimic wasps, with vivid yellow and black patterns and modified antennae.


Multi-functional

Not needing to carry and store pollen for their young (like most bees do) doesn’t prevent them from being extremely important pollinators. Researchers have found that although syrphid flies pollinate less effectively per flower visit, they visit flowers more often, resulting in essentially the same pollination services as bees. And, it’s thought that they may be more tolerant of the landscape changes that we humans insist on, than bees are.

But syrphid flies are not only important as pollinators in gardens, organic farms, and wild areas. During their immature stage, most species that are found in gardens and nearly half of the 6,000 syrphid fly species worldwide are voracious consumers of aphids, scale insects, and other soft-bodied pests. In coastal Central California, researchers compared romaine lettuce sprayed with an insecticide and lettuce without insecticide. They found that syrphid larvae were primarily responsible for suppressing aphids in organic romaine lettuce, and called the sprayed lettuce “unmarketable.” Other types of syrphid fly larvae are either (1) scavengers that tidy up ant, bee, and wasp nests, (2) feeders of plant material, tree sap, and fungi, or (3) decomposers that feed on decaying organic matter. To add to their achievements, larvae are reportedly more effective in cool weather than most other such predators.

Myathropa florea, male. Larvae feed on bacteria at the base of trees or in decaying leaves.

Myathropa florea, male. Larvae of this species feed on bacteria at the base of trees or in decaying leaves.


Life Cycle

Females lay their tiny, elongated eggs singly on leaves—typically near aphid colonies, so food is within reach—and they hatch in a few days. The tapered, grub-like larvae are blind and legless, but the mouths of these aphid-eaters are equipped with triple-pointed darts that enable them to pierce and suck their prey dry. At maturation, the larvae are promoted to the soil to become pupa and, eventually, adult flies. Their life cycle takes several weeks; reportedly three generations per year are typical in the Northwest. Most syrphid flies overwinter as larvae in leaf litter—yet another reason to not remove fallen leaves from soil!

Close encounters
The best way to spot these helpful, colorful little insects in your garden is to move slowly and quietly, and observe carefully. Sometimes all I have to do is pause next to a group of flat-topped flowers (white or yellow ones seem to be their favorites), and within a few minutes one or two will show up to eat (and to dazzle me—in morning sunlight these exceptional little pollinators shimmer!). I’ve photographed eight different species in my small yard, and I’ve just started. Hopefully I’ll encounter many more of these fascinating little flyers in the years to come.

To avoid confusion with bees and wasps, just remember that syrphid flies have huge compound eyes (which help to determine their gender—female eyes are spaced slightly apart while males’ come together at the top of their head); their bodies are sometimes flatter than bees and wasps; their antennae are usually very short; they don’t carry pollen around like most bees do; they have one pair of wings (unlike bees and wasps that have two pairs). The second pair of wings of flies has been reduced to two little knobs called halteres, which can be seen in the photo below. Halteres function like tiny gyroscopes that allow them to stay balanced by detecting and correcting changes in rotation while flying, and enable their zippy acrobatic flights.

Although the mouth parts of syrphids vary between species, allowing different species to access nectar in differently shaped flowers, their typical mouth is basically a retractable extension with a spongelike tip that can soak up either nectar or pollen. The species that have this can only feed on open flowers that have easily accessible nectar. Some species have a modified mouth that allows them to feed at elongated, tubular flowers.

The halteres can be seen at the base of the wings.

The halteres can be seen at the base of the wings.

 

Conservation
Syrphid flies have been studied very little in the U.S., but European research has shown that species diversity has fallen in areas of intensive human activity. According to the Xerces Society, in Britain, seven of the 22 flies for which Biodiversity Action Plans have been prepared are syrphid flies. Given the substantial loss of pollinators induced by habitat loss, pesticides, nonnative species and climate change, and the profusion of others in danger of extinction, there is a definite need to conserve all types of wild pollinator communities.

Providing for these flies is similar to most other pollinators: A variety of flowers from spring till fall for adults, and appropriate habitat for egg laying, larval development, and overwintering. Attract and nurture syrphid flies with a diversity of native plants that provide a lot of nectar and pollen (females need pollen to produce eggs). In the Pacific Northwest, try yarrow (Achillea millefolium var. occidentalis), stonecrop (Sedum spp.), goldenrod (Solidago canadensis), blue-eyed grass (Sisyrinchium spp.), fleabane (Erigeron spp.), white spiraea (Spiraea betulifolia var. lucida), mock orange (Philadelphus lewisii), and aster (Symphiotrichum spp.). The flowers of chamomile, dill, parsley, and other garden herbs with flat-topped flowers are also very attractive to them, as is the pollen of grasses and sedges that’s often available early in the season. Be sure to allow leaf litter and downed wood to remain on soil to help them get through the winter and to provide food for the decomposer types.

Aphid remedy|
If you have an aphid problem on some plants, remember that predatory insects that keep pests at acceptable levels need prey like aphids. Always inspect aphid colonies for syrphid fly larvae before even thinking about control, even “organic” remedies. Use only plain water to spray off aphids (that can’t climb back on), if necessary. Never use insecticides, to which syrphid flies and other creatures are very sensitive. Sometimes just turning your back is the best thing: one summer a large patch of native bleeding heart (Dicentra formosa) in my backyard was absolutely infested with aphids. I decided to let nature take her course—cheering on the ladybird beetles and birds who I thought might like the situation—and as the leaves died back (as they do naturally when the heat of summer arrives) I forgot about them. The following year there were scarcely any on the bleeding heart (which, I have to say, is almost impossible to kill unless you rip it out).

 

Syrphus opinator (female) on Spiraea betulifolia var. lucida

Syrphus opinator (female) on white spiraea (Spiraea betulifolia var. lucida)

 

Eristatis male on yarrow (Achillea millefolium var. occidentalis

Eristalis sp. on yarrow (Achillea millefolium var. occidentalis)

 

© Eileen M. Stark 2016

To leave a comment, click on post’s title